乘法分配律教案(收藏十四篇)。
作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?下面是小编收集整理的《乘法分配律》数学教案,仅供参考,大家一起来看看吧。
乘法分配律教案 篇1
教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。
教学过程 :
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例5。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5+3)4 54+34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。
第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5+3)4=54+34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18+7)6 186+76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。
这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15+9) 20xx+209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的.和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。
教师:如果用a、b、c表示三个数,可以写成下面的形式:
(a+b)c=ac+bc
等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。
等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据,这个算式等于哪两个数的和乘以哪一个数?
2.做第69页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
四、作业
练习十四的第1、2题。
乘法分配律教案 篇2
一、教材依据
义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)
二、设计思想
“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的学习方式等几个方面有所创新、有所突破。
在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现——猜想——验证——总结——应用”的轨迹去发现、去探索,经历探索数学规律的.过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。
三、教学目标:
1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;
2、理解和掌握乘法分配律并会用字母表示;
3、能够运用乘法分配律进行简便计算;
4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
四、教学重点:
引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。
五、教学难点:
乘法分配律的应用,进行一些简便计算。
六、教学准备
多媒体教学课件
七、教学过程
(一)情境导入,发现问题
昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?
课件出示:图片一共贴了多少块瓷砖?
(1)谁能估一估,贴了多少块瓷砖?
(2)谁来用自己的方法来验证估计是否正确?
还有不一样的方法吗?谁来说说看?(生口答,师板书)
板书:6×9+4×9(6+4)×9
=54+36=10×9
=90(块)=90(块)
(3)请同学们观察,看看有什么发现?(学生讨论,汇报)
(二)引导探究,发现规律
1、猜想、验证
(1)能不能利用你的发现举些例子来呢?
生:举例
(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?
(学生小组合作尝试,进行探索)
2、概括、归纳
(1)说说你们刚才验证的情况。
生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。
生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。
生3……
生4……
(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?
问:我们能不能用一个式(字母)把乘法分配律表示出来呢?
生:(a+b)×c=a×c+b×c
(3)等号表示什么意思?(这个等式反过来也成立)
(三)加强应用、深化理解
我们发现了乘法分配律,它又有怎样的应用呢?
(课件分步出示练习)
1、填一填(课本49面练一练第一题)
2、请同桌同学合用研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
(1)学生讨论研究;
(2)汇报计算方法,重点说为什么这样算;
(3)小结:通过研究,应用乘法分配律可以使一些计算简便。
(四)巩固练习、解决问题
(课件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
2、下面这些题,能用简便方法计算吗?怎样计算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)课堂小结
1、说说今天我们研究了什么?
2、大家想一想,我们是怎样发现乘法分配律的呢?
3、乘法分配律有什么应用?
乘法分配律教案 篇3
教案内容:
一、课题:《乘法分配律》
二、主要讲解的内容:
课本第26页例7及相关练习题
三、学习目标
1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。
2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。
3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。
教学重难点
借助乘法的意义理解乘法分配律的意义和内涵。
四、教学准备:多媒体课件,电脑,网络,耳机等
学生准备:数学书、笔、练习本、笔记本
五、教学环节
1、反馈家庭作业(表扬做的优秀的学生,鼓励并引导完成不太好的学生积极完成作业)
2、复习导入
算一算,比一比
(10+5)×5= (8+2)×7=
10×5+5×5= 8×7+2×7=
课前同学们已经完成了复习任务,请同桌交流计算的结果和发现。我们已经学习了乘法交换律、结合律,应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?今天这节课我们再来学习乘法的另一个运算定律。
3、新授
还记得我们提出的第三个问题吗:一共有多少名同学参加了这次植树活动?
①自主探索,独立解决问题
你怎样解决这个问题?列式计算。【设计意图:让学生独立解决问题,促成多种解决问题方法的生成,为探索运算定律准备了资源。】②汇报交流,明确算法 学生先自己做上传自己想法,连麦让个别学生说明。
谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。
方法一:先算每个小组人数,再算总人数。
(4+2)×25
=6×25
=150(人)
方法二:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数,再算总人数。
4×25+2×25
=100+50
=150(人)
同学们用不同的方法解决了这个问题,计算结果都是150人。
③观察对比,概括规律
这两个算式之间有什么关系呢?
(4+2)×25=4×25+2×25
你能用自己的语言来描述这个等式吗?学生发语音
左边是4加2的和与25相乘,右边是4和2分别与25相乘,然后再相加。左右两边结果相等。
教师适时用箭头表示出来。
请你再举几个这样的例子吗,写在练习本上。
拍照展示
观察这些等式,你有什么发现?
两个数的和与一个数相乘,或者先把它们与这个数分别相乘再相加,结果相等。
④你能结合乘法的意义理解这个规律吗?
如:(4+2)×25=4×25+2×25
左边表示6个25,右边表示4个25加2个25,也是6个25,所以两者结果相等。
得出结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
⑤用字母怎样表示这个规律?
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
4、练习巩固
(1)下面哪些算式是正确的?正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
答案:× × √
解析:【考查目标1、2】借助乘法意义判断,进一步理解乘法分配律的含义,注重形式表达的认识与强化。
(2)观察下面的'竖式,说一说在计算的过程中运用了什么运算定律。
答案:运用了乘法分配律25×12=25×2+25×10
解析:【考查目标1、2】结合两位数乘两位数的笔算过程,唤起学生已有的经验,体会乘法的算法与乘法分配律的关系。
(3)李阿姨购进了60套这种运动服,花了多少钱?
答案:(75+45)×60
=120×60
=7200(元)
解析:【考查目标3】借助熟悉的生活问题情境,在列出不同算式的基础上,以生活情境的材料解释算式意义,进一步加深对乘法分配律意义的认识和理解。
5、课堂小结通过本节课的学习,你都有哪些收获?
这节课我们一起研究了一个新的运算定律:乘法分配律
用字母表示是(a+b)×c=a×c+b×c
左边表示(a+b)个c,右边表示a个c加b个c,所以两者结果相等。
如果反过来,等式仍然成立。
如4×7+4×3=4×(7+3)
利用这个定律可以使计算简便,帮助我们解决许多问题。
6、钉钉家校本布置家庭作业,当天提交。
乘法分配律教案 篇4
教学目标:
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:
理解和掌握乘法分配律的推导过程。
教学准备:
课件,卡片(课前发给学生)
教学过程:
一、拟定自学提纲 自主预习
1. 创设情境:(多媒体出示24页情境图)
教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?
(学生可能提出 济青高速公路全长大约多少千米?
相遇时大巴车比中巴车多行多少千米?)
(教师把这两个问题板书在黑板上。)
教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。
2. 出示学习目标:这节课的学习目标是:(多媒体出示)
(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。
(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。
教师引导:有信心达到这两个目标吗?(有!)
老师的指导会对你们的学习有很大的帮助,请看自学指导
3. 出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
4. 学生按自学指导自学,教师巡视,关注学困生。
二、汇报交流 评价质疑
调查学情:看完的同学请举手!看会的请放下。
1.小组交流:学习中你有哪些收获、困惑和体会,请在小组内交流一下。
2.班内汇报:师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2
=20×2
=40(千米)
110×2-90×2
=220-180
=40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的'和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答
举例验证:(125+12)×8 = 125×8+12×8
(40-4)×25=40×25-4×25
(8+16)×125=8×125+16×125
(80-8)×125=80×125-8×125
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a± b) c=ac±bc)
三、抽象概括 总结提升
1.通过以上研究,你得到了什么结论?
课堂预设
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为
(a± b) c=ac±bc
2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?
课堂预设
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
3.在记忆这个规律时,应该注意什么?
【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。
课堂预设
预设一:括号里的每一个数都要乘括号外的数。
预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。
预设三:这个规律还可以倒过来看。
教师追问:怎样倒过来看?
预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。
四、巩固应用 拓展提高
教师引导:怎么样?学会了吗?想不想挑战一下自己? 1.考一考(课件出示第26页第2题)
(1) 指4名学困生板演,其余同做在练习本上。
(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5 ( 80+70)×5
=80×70+70×5 =80×5+70×5
2.议一议
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
3.全课小结:你在本节课中有什么收获?
课堂预设
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
五、当堂训练
1.出示课本第26页第3题
2.《新课堂》第17到第19页信息窗2第1课时内容。
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
板书设计:
乘法的分配律
济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?
(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2
验证
(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125
结论:用字母表示:(a± b) c=ac±bc)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
乘法分配律教案 篇5
教学目标
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:借助实际问题体会、认识乘法乘法律。
教学难点:用乘法交换律和结合律算式。
预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,
右边都是两个数和这个数相乘再相加。
不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题dG15.com
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。
板书设计
作业设计:
课堂作业本P15
口算训练P16
教学反思
课后反思:在第一个班上课,我是运用以上的'情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。
在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,
生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。
生2:是呀,一个数好像是公共财产,都是它们共有的。
这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。
乘法分配律教案 篇6
教学目标
1、引导学生探究和理解乘法分配律。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
借助实际问题体会、认识乘法乘法律。
教学难点:
用乘法交换律和结合律算式。
预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,右边都是两个数和这个数相乘再相加。
不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的`和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。
板书设计
作业设计:
课堂作业本P15
口算训练P16
教学反思
课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。
在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说:
生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。
生2:是呀,一个数好像是公共财产,都是它们共有的。
这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。
乘法分配律教案 篇7
教学目标
1.引导学生探究和理解乘法分配律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学重点:
借助实际问题体会、认识乘法乘法律。
教学难点:
用乘法交换律和结合律算式。
预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,
右边都是两个数和这个数相乘再相加。
不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。
板书设计
作业设计:
课堂作业本P15
口算训练P16
教学反思
课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。
在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,
生1:我觉得这样的`两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。
生2:是呀,一个数好像是公共财产,都是它们共有的。
这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。
乘法分配律教案 篇8
教学内容:
探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”、“练一练”等)
重点:指导学生探索乘法的分配律。
难点:发现并归纳乘法分配律
关键:指导观察分析算式的特征。
教学目标:
1、通过探索乘法分配律中的'活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。
教具准备
实物投影仪或挂图(课文插图)
教学过程:
一、导入谈话:
教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。
板书:探索与发现(三)
今天,又有什么发现呢?让我们一起走上探索之路。
二、探索交流、发现规律
1、呈现课文插图(实物投影或挂图)
教师:一共贴了多少块瓷砖?你怎么算?
2、先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。
3、反馈交流情况。
由小组派代表汇报交流结果(有选择地板书)。
学生A:6×9+4×9
=54+36
=90(块)
学生B:(6+4)×9
=10×9
=90(块)
要求学生结合插图说明算式的意义。
4、指导学生结合观察算式的特点。
5、举例验证。
让学生根据算式特征,再举一些类似的例子。
如:(40+4)×25和40×25+4×25
42×64+42×36和42×(64+36)
讨论交流:
(1)交流学生的举例是否符合要求:
(2)交流不同算式的共同特点;
(3)还有什么发现?(简便计算)
6、字母表示。
教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书。
(a+b)×c=a×c+b×c
7、提示课题。
教师在未完成的板书中添上:乘法分配律。
三、应用规律,解决问题
课文第46页的“试一试”。
1、(80+4)×25
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
(3)鼓励学生独自计算。
2、34×72+34×28
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
四、巩固练习
1、课文第46页的“练一练”。
第1题,简单的应用乘法分配律进行计算。
第2题,注意指导一些算式的计算方法。
99×11:可以看成(100-1)×11=1100-11
或看成99×(10+1)=990+99
38×29+38应该把算式看作:38×29+38×1
第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。
第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。
第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。
2、选用课时作业设计。
[板书设计]
乘法结合律
3×(5×4)=6015×25×4=1500
(3×5)×4=6015×(25×4)=1500
乘法结合律:(a×b)×c=a×(b×c)
教学挂图
乘法分配律教案 篇9
教案内容:
一、课题:《乘法分配律》
二、主要讲解的内容:
课本第26页例7及相关练习题
三、学习目标
1、结合具体的情境,尝试计算,初步认识和理解乘法分配律的含义。
2、通过观察交流、举例验证,概括规律,并能用字母式子表示乘法分配律。
3、通过解决生活中的实际问题,借助乘法的意义进一步理解乘法分配律的内涵。
教学重难点
借助乘法的意义理解乘法分配律的意义和内涵。
四、教学准备:多媒体课件,电脑,网络,耳机等
学生准备:数学书、笔、练习本、笔记本
五、教学环节
1、反馈家庭作业(表扬做的优秀的学生,鼓励并引导完成不太好的学生积极完成作业)
2、复习导入
算一算,比一比
(10+5)×5= (8+2)×7=
10×5+5×5= 8×7+2×7=
课前同学们已经完成了复习任务,请同桌交流计算的结果和发现。我们已经学习了乘法交换律、结合律,应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?今天这节课我们再来学习乘法的另一个运算定律。
3、新授
还记得我们提出的第三个问题吗:一共有多少名同学参加了这次植树活动?
①自主探索,独立解决问题
你怎样解决这个问题?列式计算。【设计意图:让学生独立解决问题,促成多种解决问题方法的生成,为探索运算定律准备了资源。】②汇报交流,明确算法学生先自己做上传自己想法,连麦让个别学生说明。
谁愿意把自己解决问题的方法展示给大家,并说明解决问题的步骤。
方法一:先算每个小组人数,再算总人数。
(4+2)×25
=6×25
=150(人)
方法二:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数,再算总人数。
4×25+2×25
=100+50
=150(人)
同学们用不同的方法解决了这个问题,计算结果都是150人。
③观察对比,概括规律
这两个算式之间有什么关系呢?
(4+2)×25=4×25+2×25
你能用自己的语言来描述这个等式吗?学生发语音
左边是4加2的'和与25相乘,右边是4和2分别与25相乘,然后再相加。左右两边结果相等。
教师适时用箭头表示出来。
请你再举几个这样的例子吗,写在练习本上。
拍照展示
观察这些等式,你有什么发现?
两个数的和与一个数相乘,或者先把它们与这个数分别相乘再相加,结果相等。
④你能结合乘法的意义理解这个规律吗?
如:(4+2)×25=4×25+2×25
左边表示6个25,右边表示4个25加2个25,也是6个25,所以两者结果相等。
得出结论:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。
⑤用字母怎样表示这个规律?
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
4、练习巩固
(1)下面哪些算式是正确的?正确的画“√”,错误的画“×”。
56×(19+28)=56×19+28 ( )
32×(7×3)=32×7+32×3 ( )
64×64+36×64=(64+36)×64 ( )
答案:× × √
解析:【考查目标1、2】借助乘法意义判断,进一步理解乘法分配律的含义,注重形式表达的认识与强化。
(2)观察下面的竖式,说一说在计算的过程中运用了什么运算定律。
答案:运用了乘法分配律25×12=25×2+25×10
解析:【考查目标1、2】结合两位数乘两位数的笔算过程,唤起学生已有的经验,体会乘法的算法与乘法分配律的关系。
(3)李阿姨购进了60套这种运动服,花了多少钱?
答案:(75+45)×60
=120×60
=7200(元)
解析:【考查目标3】借助熟悉的生活问题情境,在列出不同算式的基础上,以生活情境的材料解释算式意义,进一步加深对乘法分配律意义的认识和理解。
5、课堂小结通过本节课的学习,你都有哪些收获?
这节课我们一起研究了一个新的运算定律:乘法分配律
用字母表示是(a+b)×c=a×c+b×c
左边表示(a+b)个c,右边表示a个c加b个c,所以两者结果相等。
如果反过来,等式仍然成立。
如4×7+4×3=4×(7+3)
利用这个定律可以使计算简便,帮助我们解决许多问题。
6、钉钉家校本布置家庭作业,当天提交。
乘法分配律教案 篇10
教学目标:
1、发现、理解和掌握乘法分配律;
2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;
3、培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。
教学重点:
乘法分配律的意义及其应用。
教学难点:
应用乘法分配律进行简便计算。
教学过程:
一、创设情境,激发兴趣:
(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?
生:(齐)高兴激动。
生1:打个招呼,宋老师好。
生2:宋老师好!
师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?
生:不是,是分别握手。
生:乘法分配律(小声地)
(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)
二、自主探索,合作交流
师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。
1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?
(1)阅读理解:让学生充分表达自己知道了什么。
生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。
生2:每个小组共有6人。
(2)分析解答:
学生汇报自己的解法,引导学生说明不同算法的理由。
板书:(4+2)×25 4×25+2×25
2.两个算式的结果怎样?用什么符号连接?生读等式
板书:(4+2)×25=4×25+2×25
生读算式(4+2)×25=4×25+2×25
3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?
口头列式,得出(58+42)×9=9×58+9×42(生读等式)
4、观察这两组算式,请你写出一些类似的式子.
每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)
投影展示
生1:(1+2)×3=1×3+2×3
(3+2)×4=4×3+2×4
(10+2)×5=10×5+2×5
(6+4)×5=6×5+4×5
生2:(4×2)×3=4×3+2×3
生3:他的算式是错的,括号里应该是两数之和。
生4:( + )× = × + ×
(a+b)×c= a×c+ b×c
a×(b+c) = a×b+ a×c
师;尝试用文字总结发现的规律
生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、
等号两边的算式有什么相同和不同?
5、集体归纳。
抓住:两个数和、分别相乘
小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)
两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。
6、讨论记忆乘法分配律的方法。
师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。
生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。
生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。
学生的'方法很多。
(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)
三、巩固新知,尝试练习
1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?
(12+200)×3=□×3+□×3
15×(40+2)=□×40+□×2
2、数学游戏:找朋友
(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)
(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)
提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?
(2)整理卡片,分成两组
甲组 乙组
① 100×31+2×31 ① (100+2)×31
② 9×(37+63) ② 9×37+9×63
③ (22+18)×7 ③ 22×7+18×7
分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。
(设计意图:制造冲突,引出认知矛盾)
男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)
小结:能口算,并且能凑整十、整百数,算起来比较简便。
利用乘法分配律可以使一些计算简便。
(这一环节进行充分运用,渗透简便运算的意识)
四、运用规律,内化新知
(8+4)× 25= 34×72+34×28=
先观察,说一说算式特点,再尝试计算、 指名板演、全班交流
(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)
五、课堂总结与评价:
用自己的话说一说什么是乘法分配律?
(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)
板书设计:
乘法分配律
(4+2)×25 = 4×25+2×25
(a+b)×c= a×c+ b×c
甲组 乙组
① 100×31+2×31 ① (100+2)×31
② 9×(37+63) ② 9×37+9×63
③ (88+12)×7 ③ 88×7+12×7
乘法分配律教案 篇11
一、教学目标:
(一)知识目标。
1、过探索活动,进一步体会探索的过程和探索方法。
2、通过探索活动,发现乘法分配律,并用字母进行表示。
(二)能力目标。
1、学习过程中,培养学生的探索意识和探索精神。
2、探索、交流过程中,培养学生发现问题、提出问题的能力。
3、培养学生观察、比较、抽象、概括能力。
(三)德育目标。
体验数学与生活的密切联系,认识到许多实际问题可以用数学方法来解决,激发学生对数学的兴趣。
二、教学重点:
理解乘法分配律。
三、教学难点:
乘法分配律的应用。
四、教学方法:
1、猜测法。
2、验证法。
五、教具准备:
课件。
六、教学过程:
(一)导课。
应用乘法结合律进行简算。
2745= 8(725) = 3425=
(二)学习新课。
1、师:学校在假期位每个班级的墙上都铺了瓷砖,咱们现在估计咱班东墙和北墙一共铺了多少块瓷砖,好吗?
2、学生汇报:有的说100块,有的说90块。
3、详细汇报
生1:我将瓷砖分成两部分,两部分的和就是瓷砖的总块数。列式是69+49=90(块)
生2 :我也发现有90块,因为有10行瓷砖,每行9块。
生3:那么是不是说明69+49=(6+4)9大家说的对不对呢?再举一些例子验证一下吧。
4、请大家观察这些例子的左右两边,有什么特点?
生1:从左到右是相同因数乘不同因数的和。
生2:从右到左是相同因数分别乘不同的因数,再将它们的'积加起来。
5、师:我们把乘法这样的规律叫乘法的分配律。如用A、B、C
表示三个数,你能写出乘法结合律吗?
6、(A+B)C=AC+BC叫乘法的分配律。
(三)巩固练习。
1、填一填。
35(2+5)=352+35( ) (43+25)2=( ) ( )+( )( )
2、拓展练习。
运用学的规律,将计算过程变得简便些。
201950= 632547=
(四)全课总结。
这节课,你学到了那些知识?会用乘法分配律简便运算吗?
(五)布置作业。
第49页练一练第2、3题。
乘法分配律教案 篇12
教学目标:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
3、会用乘法分配律进行一些简便计算
重点难点:
1、 指导探索乘法分配律。
2、 发现并归纳乘法分配律。
方法指导:
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
教学流程:
一、激趣导入
(约3分钟)
创设情境,提出问题
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
二、自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨
(1)一共有几种搭配方案?
(2)介绍自己的'方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
三、合作交流
(约10分钟)
1、汇报交流
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4
B.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )
2、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。
教师板书
一套 4 = 4件上衣 + 4条裤子
(225+75)4 = 2254 + 754
(225+125) 4 = 2254 + 1254
乘法分配律教案 篇13
教学内容:
探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”、“练一练”等)
重点:
指导学生探索乘法的分配律。
难点:
发现并归纳乘法分配律
关键:
指导观察分析算式的特征。
教学目标:
1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。
教具准备
实物投影仪或挂图(课文插图)
教学过程:
一、导入谈话:
教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。
板书:探索与发现(三)
今天,又有什么发现呢?让我们一起走上探索之路。
二、探索交流、发现规律
1、呈现课文插图(实物投影或挂图)
教师:一共贴了多少块瓷砖?你怎么算?
2、先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。
3、反馈交流情况。
由小组派代表汇报交流结果(有选择地板书)。
学生A:6×9+4×9
=54+36
=90(块)
学生B:(6+4)×9
=10×9
=90(块)
要求学生结合插图说明算式的意义。
4、指导学生结合观察算式的特点。
5、举例验证。
让学生根据算式特征,再举一些类似的例子。
如:(40+4)×25和40×25+4×25
42×64+42×36和42×(64+36)
讨论交流:
(1)交流学生的举例是否符合要求:
(2)交流不同算式的共同特点;
(3)还有什么发现?(简便计算)
6、字母表示。
教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书。
(a+b)×c=a×c+b×c
7、提示课题。
教师在未完成的板书中添上:乘法分配律。
三、应用规律,解决问题
课文第46页的`“试一试”。
1、(80+4)×25
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
(3)鼓励学生独自计算。
2、34×72+34×28
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
四、巩固练习
1、课文第46页的“练一练”。
第1题,简单的应用乘法分配律进行计算。
第2题,注意指导一些算式的计算方法。
99×11:可以看成(100-1)×11=1100-11
或看成99×(10+1)=990+99
38×29+38应该把算式看作:38×29+38×1
第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。
第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。
第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。
2、选用课时作业设计。
[板书设计]
乘法结合律
3×(5×4)=6015×25×4=1500
(3×5)×4=6015×(25×4)=1500
乘法结合律:(a×b)×c=a×(b×c)
教学挂图
乘法分配律教案 篇14
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的`兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×11 12×77+8×77
(12+8)×77 36×25+4×25
(58+12)×14 27×21+27×29
27×(21+29) 11×(58+49)
(36×4)×25 58×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=( )×( )
五、布置作业
p.57第2、4、5、6题
-
工作总结之家小编为您推荐乘法分配律教案专题,欢迎访问:乘法分配律教案